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ON THE GRAM-ATOMIC VOLUMES OF METAL-METALLOID

GLASS FORMING ALLOYS

D. Turnbull

A large number of alloy glasses are composed{by combining late
transition elements (A) with certain metalloids (B), suchas Si, P, C, 1
Ge, B, in ratios ranging roughly from A'gB to AgB. This range usually

includes a composition, near A’QB,/ at which the system exhibits an extra-

ordinarily deep eutectic.% The actual glass temperatures, Tg, vary
only slowly with composition around this eutectic?\ thus, the reduced glass
temperature, : T;fg = T’Z/Tg, where T[ is the liquidus temperature, will
be at or near maximum at the eutectic. The existing thermal measurements
indicate that substantial heat is evolved when the alloys form from the pure
metallic liquid states of A and B and that considerable short range
compositional order developé‘sre— as the alloy melts are cooled to Tgf‘.

The existing density measurements indicate that the volume changes
accompanying the crystallization of alloy glasses are quite small. In
particular, Chen et al. 7 found changes of only ~ -0.4 to -0.5% in the
crystallization of melt quenched Pd-Ni-P glasses and Ca,rgill8 had reported
volume decreases of 0.6 to 1.4% attending the crystallization, to Ni3P+Ni,
of electrodeposited amorphous Ni-P alloys. Cargill's results also indica.ted2
that, within the + 1% experimental scatter, the partial atomic volume of
phosphorus in the amorphous alloys was constant at a value remarkably

close, within 2%, to that of Ni over the entire composition range

hodee
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investigated-- Ni88P12 to Ni74P26. A similar correspondence holds
for crystalline Ni3P.

This paper reports calculations of the partial atomic volumes of the
B elements from density data on A-B metal-metalloid alloys and on the
applicability to these results of the correspondence relation indicated for

the Ni-P alloys.

Analysis

Gram atomic volumes, V, of metal-metalloid glasses at 300°K
were calculated from the density data known to me and the specified alloy
compositions. V values of the A rich crystalline A-B phases, A4B,
A3B, or AZB’ were calculated from the X-ray diffraction data tabulated
by Pearson, I excepting where otherwise noted. Errors in specifications
of the compositions probably contribute uncertainties of at least 1 to 2%
to the computed atomic volumes.

The concentration dependence of V for most of the amorphous systems
cannot be evaluated precisely because of the narrowness of the composition

ranges investigated. In our analysis it is assumed that this dependence is

of the form indicated by Cargill's measurement58 for Ni-P alloys, that is:

V=XV, ¢ (1-xA)VB 8 (1)

VA values of the pure amorphous A states at 300°K are generally not

available. In our analysis VA is set equal to VX, the gram atomic volume
(or its arithmetic mean if there are two or more A components) of the A
element in its 300°K close-packed crystalline state. This assumption

should introduce little error in view of the small volume decreases which
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attend crystallization. Thus, we obtain:

Yo TP
V. = A A : (2)
B 1 X
A

The results of these calculations are summarized in Table 1. We note
for the amorphous combinations of A with either P or Si that V ?-‘VX,
to * 2%, with the corollary that VB = VAO. to £ 10%. This correspondence
would not be especially noteworthy if the VX range between the different

alloys were small, as indeed it is in the A-Si alloys investigated, where 4

VX goes from 8. 6 to 8.9 while V(S)i ranges between 8.2 and 8.9 cm3/gm atom.
However, in the A-P alloys Vg varies much more widely, from 6.6 to 8.9,

as VB ranges between 6.4 and 9.5. This latter result suggests a volume

scaling relation, presumably within certain limits, of VB to VX.

We see that this same scaling relation seems to extend, with similar
variances, to the crystalline silicides and phosphides, in which VAO ranges
quite widely. For the entire body of results on the phosphides and silicides,
whether in amorphous or crystalline form, the ratios of the maximum to the

minimum values of the different parameters are as follows:

Alloy Maximum/Minimum
=0 =0, = = /TO
Va A% A/V Va VB/ A
Phosphides 1, 35 1. 04 1.48 1.21

Silicides 1,57 1. 04 1. 69 1.18
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TABLE 1,

-4

Gram atomic volumes (V) in cm3/gm. atom of various

metal-metalloid alloys in their amorphous solid or

crystallized states. Ing¢
of Cargillfo riz

and Davis

gram atomic volumes,

taken from Gsch
following Cargill "~
suggested value VP

15

Al was treated as a

Alioy

Pdl‘Si

Pdg,.45117.6
Pd, g 4%%.15115.5

Pd;g 6Cus 95118, 5

P,y 8085, 75190, 5

Pd,o.8%145415. 2

Pd,g gCugSije. o

Pd,g sM,5116.5

Auasi(Y) (cubic Y)

Pd3Si (orthorhombic)

Pt381 (monoclinic)
i
Ni, si,, (cubic)

N1281 (orthorhombic)

C0251 (orthorhombic)

<|

8.71
8.67
8.64
8.57
8.67

8.74

10.26
8.59
8.75
6.49
6.60

6.56¢

8.88
8.88
8.75
8.75
8.75
8.59
8.71

8.76

—

k1)
v A/V

Amorphous Silicides

1.00
1.01
1.005
1.01
1.01
1.00
1.00,

5 1.00

Crystalline Silicides

10.Zé
8.88
9.09
6.59
6.59

6.69

1.00
1.03
1.035
1.015
1.00

1.02

excepting,

Si

ompiling this table, the reviews
were used extensively. The
VR, of the pure metals were
er's compilation
, we have preferred Hume-Rothery’s19

= 8.77 cm”/gm. atom for manganese,
element.

Vé vB/V;
8.83 0.99
8.31 0.94
8.49 0.97
8.33 0.95
8.20 0.94
8.46 0.985
8.46 0.97
8.62 0.98
V;i=9.6

10.42 1.02

7.7 0.87
273 0.85
6.17 0.94
6.63 1.00g
6.32 0.9,

v2,=9.6

Ref.
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Alloy

Nig, 4P18.6

Ni,4 gP2.2

NigcPdy,Pa0

N1, 0Pd40P20

6" %4 20
Cog1P19
Co26.4%23.6
M, 5PteoP2s5
Pdsg. M5, 216
"24%20
",3.1F23

51.9"22.1%26

5

Pdgs.sMryy . sPa3

Pdg; g¥nyg.2F03

Fder.2

5

29.3%23

' Ni, P

3 (tetragonal)
Fe P tetragonal

Pd3P (orthorhombic)

Co,P (orthorhombic)

<l

6.70

6.66

704

7.63
8.32
6.74
6.63
8.52
8.95
8.87
8.78
8.66
8.75
8.78

8.80

6.63
6.965
8.66
6.59

<
o

o Y
e
VA/v

Amorphous Phosphides

6.59 0.98
6.59 0.99
7.28 1.02
7.735 1.01
8.42 1.01
6.69 0.99
6.69 1.01
8.59 1.01
8.85 0.99
8.85 1.00
8.85 1.01
8.85 1.02
8.86 1.01
8.85 1.01
8.84 1.00,

Crystalline Phosphides

6.59 0.995
7.09 1.02
8.88 1.02

6.69 1.00

7.18
6.86
6.6
7.20
7.92
6.94
6.44
8.32
9.50
8.95
8. 54
8.12
8.39
8.54

8.65

6.76
6.58
8.00
6.39

Ve=7.1

1.09
1.04
0.91
0.93
0.94
1.04
0.96

0.97

1.01
0.96,
0.92
0.95
0.96

0.938

1.03
0.93
0.9
0.96

Ref.
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Alloy

Aug, 6013 7585
(liquid at 402°C)

Fe,5P15%0

FegyP13¢7
Ni (P, BeAl,

Ni gFe; qP; 48651,

NijgFe qP4BeAl3

NijcFes,Cry,P12B
Fe,3P1686A13

FegoPa20

b T
e
Ni_Ge
Pd,Ge

Pt Ge

<l

10.95

6.87

7.08
6.57
6.73
6.56
6.79
6.80

6.32

6.75
7.07¢
6.84
8.75

9.14

A

e A=
vA/v v

Other Amorphous Phases

10.87

7.09

7.09
6.59
6.78
6.84
6.92
7.09

7.09

(2)
(402°C)

0.99 11.23
1.03 6.48
1.00 7.1
1.00 6.53
1.01 6.78
1.04 5.66
1.02 6.24
1.04 5.97
1.12 3.6

Crystalline Germanides

6.69
7.09
6.59
8.88

9.09

0.99 6.87
1.00 7.05
0.96 7.60
1.015 8.49
0.99 9.24

N
VB 12.0

v, /v°

1.04(402°C)

0.91

1.00
0.99
0.97
0.83
0.90
0.84

0.51

1.03
0.99
1.15
0.96

1.02

Ref.
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12
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12
12
12
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The dependence of V and VB on VX in these alloys is displayed

graphically in Figures 1 and 2.
The tendency of VB to scale with VX persists in certain A-B
alloys containing two or more B elements, e.g., molten Au.”. 8Gel3, 7Si8. 5

o
at 402°C, amorphous FeZSPISCIO and Fe80P13C7, and most of the

Allied Chemical Metglasses. That the scaling has its limits is shown by

the results that the computed gram atomic volume of boron in Fe4B is

only (1/2)V2 and that VB/VX is well below 0,9 in some of the other

Fe’

Metglasses containing substantial boron. Also, while the scaling holds for

the crystalline A-germanides, there are rather large excesses of VB

over VX for certain crystalline A -arsenides.
Certain alloys of late with early transition metals, e.g., Cu-Zr,
constitute another important group of metallic glasses. 29 Density data on

Cu-Zr alloys provide no suggestion of VZ Vs, V‘(’:u scaling., Actually,

r

the calculated V's of these glasses, Al as well as of crystalline CuZ r,,

are simply, within the experimental uncertainty, the averages of the gram

atomic volumes of the pure crystalline constituents, -\7%“ =7.1 and

V%r = 14, 04 cm3/gm atom,

Interpretation of Results

The X-ray diffraction data on metal-metalloid glasses are generally
consistent with a model in which the A atoms are in a somewhat relaxed
Bernal dense random packed (DRP) arrangement, e Polk22 suggested
that the B atoms in these glasses may be sited, with some distortions,
in the larger holes formed by the A-DRP structure since they would then

be in positions quite similar in environment to those in which they occur
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FIGURE la. Gram-atomic volumes, T_, (cm3/gm. atom), of metal-
silicides vs. the gram atomic volumes, Vx, of the pure metal crystals
at 300°K. © and A denote results on, respectively, glass and
crystalline alloys. The points are enclosed in an area indicating the
estimated, % 2%, maximum experimental uncertainty range. The dashed
line represents the V = VX relation.
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FIGURE lb. Vg vs. Va for the metal silicides. Enclosed area indicates
estimated, + 10%, maximum experimental uncertainty range. Dashed line
represents VB =V

A Symkbols are as in Part a.




] FIGURE 2a. V vs. VX for metal phosphides. Designations are as
; in Fig. la,




4 FIGURE 2b,
in Fig., 1b.

=11=

(o]

VB vs, VA for metal phosphides. Designations are as
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in certain of the A3B crystal structures. Such siting would require AB
spacings well below the minimum for AA. Actually, the diffraction data
indicate that the structure of amorphous Ni-P alloys is consistent with
a two size, radius ratio rP/rNi of ~0.8, hard sphere packing model
in which the small spheres are not permitted to be near neighbors of each
other. &2 In such a model the rough correspondence of VP with vNi’
required by the volumetric measurements, would be achieved by a lower
coordination number of P relative to that of Ni.

It is reasonable to suppose, though it is not proven, that the metal-
metalloid glasses with any given A/B ratio greater than 2/1 are struc-
turally similar to one another. Then the scaling of V., with V2 noted

B A
for Si and P alloys would indicate that the topology and scale of the

configurations in which the metalloids occur are determined, within wide

limits, by some characteristic spacing in the pure metal host structure.

If we view the A-B structure as composed by packing A spheres with
smaller B spheres, then the volume of the B spheres would not be fixed
but would expand or contract as necessary to fit the spaces presented by
the different A hosts. To account for the phosphide and silicide results
on this basis, the radii of the B spheres would have to be adjustable by
amounts of 15 to 20%. Such scaling of VB with VX is consistent with
Polk's model22 for the metal-metalloid amorphous structure and also with
the author's suggestion2 that the energy of AB type alloys at constant
electron density is relatively insensitive to the near neighbor spacings of
AB pairs.

It seems that some criterion for the breakdown of the scaling

relation, evident from the results on the borides and arsenides, might




-13-

be framed in terms of the gram-atomic volume, V‘B). of the metalloid in
its pure metallic state. However, the present results are not adequate
for establishing such a criterion. Table 1 lists values of Vg at 300°K
estimated for Si and Ge by extrapolation, using a thermal expansion
coefficient of 10'4/°C, of the specific volumes of their molten states,
which are metallic. Also listed is the metallic volume of phosphorus
computed from the Goldschmidt radius for this element recommended

by Hansen. 24 Vlg and Vs"i fall within, while Vée is somewhat above,

the range of VX of the late transition metal glass formers. Presumably,

—o s 570 .
vBoron is far below and VAs is well above this range.

We have noted that the diffraction and thermal data indicate a high
degree of compositional short range order (C-SRO) in metal-metalloid
glasses. The temperature dependence of the heat capacity of these alloys
suggests that much of the C-SRO develops as the melts are cooled from
relatively high temperature to Tg' It seems reasonable to suppose that

the changing degree of C-SRO with T would contribute substantially to

the thermal expansion coefficient, @, of the molten alloy. The measure-

ments of Chen et al. 7 indicate that the @'s of Pd-Ni-P alloys increase

by factors of at least 1.7 to 2.5 in the glass > melt transition. Whether
the 2 levels reached by the alloy melts are significantly higher than those
of the pure molten metals is unclear since measurements of the latter,
especially into the undercooled range, are sparse. The thermal contrac-
tion of the alloys to Tg is evidently sufficient to reduce the volume changes

upon crystallization to levels of order ~ 1/10 of those which accompany

the crystallization of pure metal melts at Tm. The free volume model

relates the increased atom transport resistance with decreasing T to
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thermal contraction and it was the basis for Ramachandrarao et al. 's

recent interpretation for the viscosity behavior of molten glass forming

alloys.
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